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Introduction- composite Higgs

• Composite Higgs models are well motivated as they can 
explain the large observed hierarchies.

• Among the most attractive targets for the LHC and future 
colliders

• Higgs can be a confined composite state of strong dynamics 
at or above the TeV scale.
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Introduction- phase transitions

• Early universe 1st order phase transitions (PT):

ØStochastic gravitational wave background from the 
PT can be observed.

ØPT affects baryon and dark matter genesis:
§ Generation of baryon asymmetry during the 

transition (e.g. electroweak baryogenesis) 

§ A supercooled PT dilutes matter abundances 
(similar to inflation)
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Introduction

• Early universe 1st order phase transitions (PT):

ØStochastic gravitational wave background from the PT 
can be observed.

ØPT affects baryon and dark matter genesis

• Composite Higgs: a confinement-deconfinement PT

• Strongly coupled, non-perturbative!
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How to analyze the confinement PT?
Composite Higgs models: nearly conformal, large 𝑁
Holography (5D)

• 4D strong coupling → weakly coupled 5D Gravity  (𝐺!
(#$) ∼ &

!!
)

• PT dynamics in 5D EFT control

Spontaneous confinement  (4D)
• Deconfined theory approximately scale invariant
• Confinement breaks scale invariance, but spontaneously
• Corresponding pNGB is dilaton
• Dynamics of dilaton dominates the PT in some regime

Majid Ekhterachian (UMD) 5



Holographic dual 
Low temperature phase: RS1

6

UV brane

(𝒙𝟓 = 𝟎) IR brane
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Dual of the confined phase

𝑑𝑠! = 𝑒"!#$!𝜂%&𝑑𝑥%𝑑𝑥& + 𝑑𝑥'!
0 < 𝑥' < 𝑋'

Randall & Sundrum 1999
Akrani-Hamed, Porrati
& Randall 2000
Rattazzi & Zaffaroni 2000

• Control parameter: large 𝑁,   !
!

&'(!
= )"

*

+

• Confinement/ compositeness scale  ∼ 𝑀,-𝑒.*/"
(𝒙𝟓 = 𝑿𝟓)



Holographic dual
Black-brane phase → RS1
Control parameter: large 𝑁,   $

!

%&'!
= ("

)

*
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UV brane

7

IR brane

Creminelli, Nicolis & Rattazzi 2002
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(Poincare patch analog of Hawking-Page PT)

UV brane
black-
brane 
horizon

Dual of the confined phaseDual of the deconfined phase



Holography
Black-brane phase→ RS1

88

Tunneling
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(Non-perturbative) 
Tunneling rate:

Γ ∼ 𝑒"+/-"
(!$)

∼ 𝑒".&

UV brane

Creminelli, Nicolis & Rattazzi 2002

UV brane horizon

horizo
n

IR brane emerges from the horizon



How to analyze the confinement PT?
Composite Higgs models: nearly conformal, large 𝑁
Holography (5D)

• 4D strong coupling → weakly coupled 5D Gravity  (𝐺!
(#$) ∼ &

!!
)

• PT dynamics in 5D EFT control

Spontaneous confinement  (4D)
• Deconfined theory approximately scale invariant
• Confinement breaks scale invariance, but spontaneously
• Corresponding pNGB is dilaton
• Dynamics of dilaton dominates the PT in some regime
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How to analyze the confinement PT?
Composite Higgs models: nearly conformal, large 𝑁
Holography (5D)

• 4D strong coupling → weakly coupled 5D Gravity  (𝐺!
(#$) ∼ &

!!
)

• PT dynamics in 5D EFT control

Spontaneous confinement  (4D)
• Deconfined theory approximately scale invariant
• Confinement breaks scale invariance, but spontaneously
• Corresponding pNGB is dilaton
• Dynamics of dilaton dominates the PT in some regime
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Focus of this talk

Agashe, Du, M.E., Kumar, Sundrum 2020

Agashe, Du, M.E., Kumar, Sundrum 2019



Outline
Theory
• Equilibrium description
• Bubble nucleation rate

ØThe 5D bounce
Application to cosmology of composite Higgs
• Phase transition in the minimal model 

(Slow, resulting in empty universe or large supercooling and dilution)
• Faster transition rate? Beyond the minimal model
• Supercooled phase transition

Phenomenology
• Gravitational waves
• Dilution of matter and baryogenesis
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Questions to answer about the PT

• Is it 1st order, 2nd order, cross over?
• What is the critical/transition temperature?

PT Dynamics
• What is the rate of bubble nucleation?
• Does the PT complete? If yes, at what temperature? Is it 

prompt or supercooled?
• How do the bubbles/bounce solutions look like?
• What are the features of the gravitational waves generated 

by the PT?
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The two phases
• Low temperature phase: RS1
• RS1 stabilization: Goldberger-Wise mechanism
• Control parameters

• High temperature black-brane phase

Theory



Low temperature phase: RS1

• In the RS1 model, hierarchies are related to the position of 
the IR brane:

TeV
𝑀/0

∼ 𝑒"#1!

• An isometry of the bulk space-time:  4D scaling + 𝑥'
translation

𝑥' → 𝑥' + 𝛿,  𝑥% → 𝑒#2𝑥%

• Spontaneously broken by the presence of the IR brane
Ø Corresponding Glosdtone boson: radion 𝜑 = 𝑘𝑒"#1!

• What sets the position of the IR-brane (𝑋')?

Randall & Sundrum 1999
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UV brane

(𝒙𝟓 = 𝟎) IR brane

(𝒙𝟓 = 𝑿𝟓)
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𝑑𝑠" = 𝑒#"$%!𝜂&'𝑑𝑥&𝑑𝑥' + 𝑑𝑥("

0 < 𝑥( < 𝑋(



RS1 - Stabilization

• RS1: a solution to GR for specific values of bulk CC 
and brane tensions
• With this choice:

Randall & Sundrum 1999
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UV brane

(𝒙𝟓 = 𝟎) IR brane

(𝒙𝟓 = 𝑿𝟓)
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𝑑𝑠" = 𝑒#"$%!𝜂&'𝑑𝑥&𝑑𝑥' + 𝑑𝑥("

0 < 𝑥( < 𝑋(

𝑉345678(𝜑) = 0

Position of the IR-brane (𝑋#) is a free parameter



RS1- Stabilization

• RS1: a solution to GR for specific values of bulk CC 
and brane tensions
• With this choice:
• If IR brane tension detuned: 

Randall & Sundrum 1999
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UV brane

(𝒙𝟓 = 𝟎) IR brane

(𝒙𝟓 = 𝑿𝟓)
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𝑑𝑠" = 𝑒#"$%!𝜂&'𝑑𝑥&𝑑𝑥' + 𝑑𝑥("

0 < 𝑥( < 𝑋(

𝑉345678(𝜑) = 0

𝑉345678 𝜑 = 𝛿𝑇9: 𝜑;

Finite, nonzero 𝜑 not stable!



Stabilization: Goldberger-Wise mechanism 
• RS1: a solution to GR for specific values of bulk CC 

and brane tensions
• If IR brane tension detuned:
• With a bulk scalar (Goldberger-Wise) field, 

minimally with the potential:

𝑉<=,?@0A Φ =
1
2
𝑚!Φ!

17Majid Ekhterachian (UMD)

𝑉345678 𝜑 = 𝛿𝑇9: 𝜑;

𝑉BCDEFG 𝜑 =
3𝑁!

4𝜋! 𝜆 𝜑
; 1 − 𝜔

𝜑
ΛHI

J

𝑉)*+(𝜑)

𝜑
𝜑

explicit breaking of  “4𝐷 scale invariance/ 𝑥(-translation symmetry” 

Hierarchy is set mainly by 𝜖 ≈ K&

;#&: ln L'(
MNI ∼

+
J

Goldberger & Wise 1999



Control parameters

• Large N, $
!

%&'!
= ("

)

*
: 5D GR perturbative

• Small 𝜆: small backreaction to geometry

• Small 𝜖: small explicit breaking of scale invariance

Majid Ekhterachian (UMD) 18

𝑉;<=>?@ 𝜑 =
3𝑁A

4𝜋A
𝜆 𝜑B 1 − 𝜔

𝜑
ΛCD

E

= *$
!

B'!
𝜆 𝜑B 1 − %

%FE/B
H
⟨H⟩

E



High temperature black-brane phase
≈ AdS-Schwarzschild
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𝑑𝑠" = −
𝜌"

𝑙"
−
𝜌,-/𝑙"

𝜌"
𝑑𝑡" +

𝑑𝜌"

𝜌"
𝑙" −

𝜌,-/𝑙"
𝜌"

+
𝜌"

𝑙"
O
.

𝑑𝑥."

UV brane black-brane 

horizon
(𝝆 = 𝝆𝒉)

Hawking temperature:  𝑇 = ℏ
PQ& 𝜌R



Theory

Equilibrium description of 
the phase transition

• Free energies
• Critical temperature
• Order of the phase transition

Majid Ekhterachian (UMD) 20



Free energy 

• Critical Temperature:
𝐹01 = 𝐹231.1

Majid Ekhterachian (UMD) 21

Creminelli, Nicolis & Rattazzi 2002

𝐹S5T"T − 𝑉BCD 0 = −
𝜋!

8
𝑁!𝑇;

𝑉)*+(𝜑)

∼
𝑁
" 𝑇
0-

𝜑
𝜑

∼
𝑁
" 𝜆
𝜖
𝜙

#

𝐹01 ≈ 𝑉456( 𝜑 )
( 𝑇 ≪ 𝜑 )

𝐹S5T"T(𝑇Z)



Transition/critical temperature

• Critical Temperature:     [)\ ∼ 𝜖𝜆
*
+ ≪ 1

• PT is first order, for small 𝜖 or 𝜆.

#
𝜕𝐹$%
𝜕𝑇 &$

≠ #
𝜕𝐹'(%)%
𝜕𝑇 &$
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1st order ⟹ bubble nucleation
Creminelli, Nicolis & Rattazzi 2002

𝑉)*+(𝜑)

∼
𝑁
" 𝑇
0-

𝜑
𝜑

∼
𝑁
" 𝜆
𝜖
𝜑

#



Questions to answer about the PT

For small 𝜖 or 𝜆:
üPT is 1st order.

üWhat is the critical temperature?
(^
)
∼ 𝜖𝜆

_
` ≪ 1

PT Dynamics
• What is the rate of bubble nucleation?
• Does the PT complete? If yes, at what temperature? Is it prompt 

or supercooled?
• How do the bubbles/bounce solutions look like?
• What are the features of the gravitational waves generated by the 

PT?

Majid Ekhterachian (UMD) 23



Bubble nucleation: review of 
general formalism

Majid Ekhterachian (UMD) 24

Coleman 1977
Colman & De Luccia 1980
Linde 1981

Theory



Bubble Nucleation

Majid Ekhterachian (UMD) 25

Some 
picture of 
bubbles 
forming and 
expanding

High T
phase

• Probability of bubble nucleation 
per unit 4-volume:

Γ ∼ 𝑇B𝑒UV#



Bubble Nucleation
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Some 
picture of 
bubbles 
forming and 
expanding

High T phase

• Probability of bubble nucleation 
per unit 4-volume:

Γ ∼ 𝑇B𝑒UV#



Bubble Nucleation

Majid Ekhterachian (UMD) 27

Some 
picture of 
bubbles 
forming and 
expanding

High T phase

• Probability of bubble nucleation 
per unit 4-volume:

Γ ∼ 𝑇B𝑒UV#



Bubble Nucleation
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Some 
picture of 
bubbles 
forming and 
expandingLow 𝑇 phase

• Probability of bubble nucleation 
per unit 4-volume:

Γ ∼ 𝑇B𝑒UV#

High T phase



Bubble Nucleation

• Probability of bubble nucleation per 
unit 4-volume:

Γ ∼ 𝑇;𝑒"c,

𝑆d: action of “bounce” solutions to 
Euclidean equations of motion that 
interpolate between the two phases 
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Some 
picture of 
bubbles 
forming and 
expandingLow 𝑇 phase

High T phase



Bubble Nucleation

• Probability of bubble nucleation per unit 4-
volume:

Γ ∼ 𝑇7𝑒.8*

• In an expanding universe, PT completes if 

Γ ≳ 𝐻7 (𝐻 ∼ 9+
!

),-
)

𝑆: ≲ 4 ln
𝑀;<

𝑇=
Majid Ekhterachian (UMD) 30

Some 
picture of 
bubbles 
forming and 
expanding

High T phase



Bubble Nucleation

• Probability of bubble nucleation per unit 4-
volume:

Γ ∼ 𝑇7𝑒.8*

• In an expanding universe, PT completes if 

Γ ≳ 𝐻7 (𝐻 ∼ 9+
!

),-
)

𝑆: ≲ 4 ln
𝑀;<

𝑇=
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Some 
picture of 
bubbles 
forming and 
expanding

High T phase



Bubble Nucleation

• Probability of bubble nucleation per unit 4-
volume:

Γ ∼ 𝑇7𝑒.8*

• In an expanding universe, PT completes if 

Γ ≳ 𝐻7 (𝐻 ∼ 9+
!

),-
)

𝑆: ≲ 4 ln
𝑀;<

𝑇=
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Some 
picture of 
bubbles 
forming and 
expanding

High T phase



Bubble Nucleation

• Probability of bubble nucleation per unit 4-
volume:

Γ ∼ 𝑇7𝑒.8*

• In an expanding universe, PT completes if 

Γ ≳ 𝐻7 (𝐻 ∼ 9+
!

),-
)

𝑆: ≲ 4 ln
𝑀;<

𝑇=
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Some 
picture of 
bubbles 
forming and 
expanding

High T phase

Low 𝑇 phase



Bubble Nucleation

• Probability of bubble nucleation per unit 4-
volume:

Γ ∼ 𝑇7𝑒.8*

• In an expanding universe, PT completes if 

Γ ≳ 𝐻7 (𝐻 ∼ 9+
!

),-
)

𝑆: ≲ 4 ln
𝑀;<

𝑇=
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Some 
picture of 
bubbles 
forming and 
expandingLow 𝑇 phase



Nucleation of thin-wall bubbles

Γ ∼ 𝑇B𝑒UV#

• For 𝑇 close to 𝑇W
ØTransition dominated by nucleation of critical 

thermal bubbles
ØCritical bubbles have a thin wall (Δ𝑅 ≪ 𝑅)
ØIn the thin-wall regime:

𝑆X =
𝑆*
𝑇
=
16𝜋
3

𝑆%*

Δ𝐹 A𝑇
𝑆+: tension of the wall

Majid Ekhterachian (UMD) 35

𝑅

Δ𝑅

𝑆1 ≈ −
4𝜋
3 𝑅1Δ𝐹 + 4𝜋𝑅"𝑆2

extremize S1 ⇒ 𝑅 ∼ 3"
45

Coleman 1977
Linde 1981



The 5D bounce
• Topology of the two phases
• Picture of the bounce configuration?
• A smooth bounce ansatz

Majid Ekhterachian (UMD) 36

Theory



AdS-Schwarzschild → RS-I

37

UV brane

(𝒙𝟓 = 𝟎)

𝑑𝑠! = 𝑒"!#$!𝜂%&𝑑𝑥%𝑑𝑥& + 𝑑𝑥'!
0 < 𝑥' < 𝑋'

37

IR brane

(𝒙𝟓 = 𝑿𝟓)

𝑑𝑠" = −
𝜌"

𝑙"
−
𝜌,-/𝑙"

𝜌"
𝑑𝑡" +

𝑑𝜌"

𝜌"
𝑙" −

𝜌,-/𝑙"
𝜌"

+
𝜌"

𝑙"
O
.

𝑑𝑥."

Majid Ekhterachian (UMD)

(Poincare patch analog of Hawking-Page PT)

Hawking temperature:  𝑇 = ℏ
PQ& 𝜌R

horizon
(𝝆 = 𝝆𝒉)

UV brane
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𝑑𝑠" = 𝜌" −
𝜌,-

𝜌"
𝑑𝑡" +

𝑑𝜌"

𝜌" − 𝜌,
-

𝜌"

+ 𝜌"O
.

𝑑𝑥."

𝑡

UV brane

𝜌−𝜌%

Euclidean AdS-Schwarzschild

horizon

𝑡 ∼ 𝑡 + 𝜋/𝜌R
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𝑑𝑠" = 𝜌" −
𝜌,-

𝜌"
𝑑𝑡" +

𝑑𝜌"

𝜌" − 𝜌,
-

𝜌"

+ 𝜌"O
.

𝑑𝑥."

𝑡

UV brane

Topology of Euclidean AdS-S

𝜌−𝜌%

𝜌−𝜌%
𝑡

UV brane

∼
horizon
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𝑑𝑠" = 𝜌" −
𝜌,-

𝜌" 𝑑𝑡" +
𝑑𝜌"

𝜌" − 𝜌,
-

𝜌"

+ 𝜌"O
.

𝑑𝑥."

𝜌−𝜌%𝑡

�⃗�

UV brane

Topology of AdS-S
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𝑑𝑠! = 𝜌!𝑑𝑡! + Di&

i& + 𝜌
!∑E 𝑑𝑥E!

(𝜌9:< 𝜌 < 𝜌jk)

Topology of  RS1

𝜌

𝑡

�⃗�

UV brane

IR brane



The 5D bounce
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𝜌

𝑡

�⃗�

UV brane

IR brane

𝑑𝑠" = 𝜌"𝑑𝑡" +
𝑑𝜌"

𝜌"
+ 𝜌"O

.

𝑑𝑥."

(𝜌67< 𝜌 < 𝜌89)

RS 1

𝑑𝑠" = 𝜌" −
𝜌,-

𝜌"
𝑑𝑡" +

𝑑𝜌"

𝜌" − 𝜌,
-

𝜌"

+ 𝜌"O
.

𝑑𝑥."

𝜌−𝜌%𝑡

�⃗�

UV brane

AdS-Schwarzschild



The 5D bounce
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Creminelli, Nicolis & Rattazzi 2002

• Connect the two phases through 
their common RS-II limits?

RS1: 𝑑𝑠" = 𝜌"𝑑𝑡" + +:#

:#
+ 𝜌"∑. 𝑑𝑥."

(𝜌67< 𝜌 < 𝜌89)

AdS-S: 𝑑𝑠" = 𝜌" − :$
%

:# 𝑑𝑡" + +:#

:##
&$
%

&#

+ 𝜌"∑. 𝑑𝑥."

RS2 limit: 𝑑𝑠" = 𝜌"𝑑𝑡" + +:#

:#
+ 𝜌"∑. 𝑑𝑥."

(𝜌 < 𝜌89)



The 5D bounce
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Creminelli, Nicolis & Rattazzi 2002

• Connect the two phases through 
their common RS-II limits?

Not fully in 5D EFT control



Is there a smooth bounce configuration?
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𝜌

𝑡

�⃗�

UV brane

IR brane

𝑑𝑠" = 𝜌"𝑑𝑡" +
𝑑𝜌"

𝜌"
+ 𝜌"O

.

𝑑𝑥."

(𝜌67< 𝜌 < 𝜌89)

RS 1

𝑑𝑠" = 𝜌" −
𝜌,-

𝜌"
𝑑𝑡" +

𝑑𝜌"

𝜌" − 𝜌,
-

𝜌"

+ 𝜌"O
.

𝑑𝑥."

𝜌−𝜌%𝑡

�⃗�

UV brane

AdS-Schwarzschild



The 5D bounce- smoothness
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ü IR-brane can be smoothly sealed at the horizon
üSmooth, finite curvature, and can be described in 5D EFT 

Agashe, Du, M.E., Kumar, Sundrum 2020



Near the horizon
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𝑑𝑠" = 𝜌" − :$
%

:#
𝑑𝑡" + +:#

:##
&$
%

&#

+ 𝜌"(𝑑𝑟" + 𝑟"𝑑Θ")

𝜙(𝑟) < 𝜌 < 𝜌89

Agashe, Du, M.E., Kumar, Sundrum 2020

𝜙(𝑟)



Near the horizon
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𝑑𝑠- = 𝜌- − .!
"

.#
𝑑𝑡- + /.#

.#0
$!
"

$#

+ 𝜌-(𝑑𝑟- + 𝑟-𝑑Θ-)

𝜙(𝑟) < 𝜌 < 𝜌12

Agashe, Du, M.E., Kumar, Sundrum 2020

• Condition for smoothness of brane Do
DB

!
≫ 𝜌R(𝜙 − 𝜌R)

• Change coordinate  𝑦 = .(0))2&
2&

: 𝑑𝑠EGD! ⊃ 4𝜌R!𝑦!𝑑𝑡! + 𝑑𝑦!



Near the horizon-
smoothness
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𝑑𝑠- = 𝜌- − .!
"

.#
𝑑𝑡- + /.#

.#0
$!
"

$#

+ 𝜌-(𝑑𝑟- + 𝑟-𝑑Θ-)

𝜙(𝑟) < 𝜌 < 𝜌12

Agashe, Du, M.E., Kumar, Sundrum 2020

• Condition for smoothness of brane Do
DB

!
≫ 𝜌R(𝜙 − 𝜌R)

• Change coordinate  𝑦 = .(0))2&
2&

: 𝑑𝑠EGD! ⊃ 4𝜌R! 𝑦!𝑑𝑡! + 𝑑𝑦! 𝑡 ∼ 𝑡 + 𝜋/𝜌R

ü Metric of a disc



The 5D bounce solution?
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• In principle one can solve the equations of motion for the metric, 
Goldberger-Wise field, and the brane(s)

• But difficult in practice!

• An analogous 6D problem has been solved in the thin-wall limit, 
but that does not address the hierarchies. Aharony, Minwalla, Wiseman 2006



Bounce ansatz
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• A smooth ansatz, bounds 𝑆I in the thin-wall regime:
𝑆:, KLMN.OP--
PNQPKR ≥ 𝑆:, KLMN.OP--

KSTU

• Problem of finding the bounce is not an action- minimization problem.

• But in the thin-wall regime it can be expressed in terms of a minimization 
problem for 𝑆&

𝑆? =
16𝜋
3

𝑆+p

Δ𝐹 !𝑇

• The ansatz provides a reasonable estimate more generally



Bounce ansatz
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• For 𝜌 ≫ 𝜌R ,    AdS ≈ AdS-S
• For 𝜌 ∼ 𝜌R,  bulk geometry ≈ AdS-S  

𝑑𝑠! = 𝜌! − i3
+

i& 𝑑𝑡! + Di&

i&"
43
+

4&

+ 𝜌!(𝑑𝑟! + 𝑟!𝑑Ω!)

𝜙(𝑟) < 𝜌 < 𝜌jk

• Bounds 𝑆d in the thin-wall regime: 𝑆?, qr68"s400
48t4qu ≥ 𝑆?, qr68"s400

q3@N

• Provides a reasonable estimate more generally

Agashe, Du, M.E., Kumar, Sundrum 2020



Bounce ansatz
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• Optimize in the the smooth ansatz class to get 
the optimum bound

• For 𝜙v ≪ 𝜙!and 𝜌R ≪ 𝜙, reduces to standard 
2 derivative radion action Agashe, Du, M.E., Kumar, Sundrum 2020



Radion dominance 
• For small 𝜖, 𝜆 the region 𝜑 ≫ 𝜌R gives the parametrically leading contribution to 𝑆d
• This part can be computed using 2-derivative radion EFT:  

ℒBCDEFG =
3𝑁!

4𝜋!
𝜕𝜙 ! − 𝜆𝜙; 1 −

1
1 + 𝜖/4

𝜑
⟨𝜑⟩

J
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Creminelli, Nicolis & Rattazzi 2002

Agashe, Du, M.E., Kumar, Sundrum 
2019 & 2020

• Our ansatz and earlier works agree in this 
region

• The parametrically subleading corrections 
to radion dominance can be quantitatively 
important



üTheory
• Equilibrium description
• Bubble nucleation rate

ØThe 5D bounce

Application to cosmology of composite Higgs
• PT in the minimal model 

(Slow: empty universe or large supercooling and dilution)
• Faster transition rate? Beyond the minimal model
• Supercooled PT

Phenomenology
• Gravitational waves
• Dilution of matter and baryogenesis
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Goldberger-Wise Stabilization: minimal model

• With a bulk scalar (Goldberger-Wise) field, 
minimally with the potential:

𝑉<=,?@0A Φ =
1
2
𝑚!Φ!

56Majid Ekhterachian (UMD)

𝑉BCDEFG 𝜑 =
3𝑁!

4𝜋!
𝜆 𝜑; 1 − 𝜔

𝜑
ΛHI

J
𝑉)*+(𝜑)

𝜑
𝜑

Hierarchy is set mainly by 𝜖 ≈ K&

;#&
: ln L'(

MNI
∼ +

J

Goldberger & Wise 1999



Bubble nucleation rate- minimal model
• Bubble nucleation rate:

Γ ∼ 𝑇;𝑒"c,

• PT completes if Γ ≳ 𝐻; (𝐻 ∼ [)
&

L56
)

𝑆? ≲ 4 ln
𝑀wQ
𝑇x

≈ 140

• For 𝑇 close to 𝑇x (thin-wall):

𝑆? ≈
𝑁!

𝜖𝜆 p/;
4 𝑇Z/𝑇

1 − 𝑇/𝑇Z ; ! ≳ 10
𝑁!

(𝜆𝜖)p/;

• Action enhanced by large N and small 𝜖

• For 𝜖 ∼ +
!' PT does not complete near 𝑇x

Creminelli, Nicolis & Rattazzi 2002
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Beyond the minimal model

• Is it possible to have a prompt/faster phase transition?
• In the minimal model the parameter 𝜖 that is setting the hierarchy 

(and hence 𝐻) suppresses the rate:

𝑆X ∼ 10 $!

E$/&

• Have a small 𝜖 in the UV, which becomes (effectively) larger in the IR?

58

> 4 ln
𝑀wQ
TeV ∼

4
𝜖

4 ln
𝑀wQ
TeV

∼
4
𝜖jk<?

Majid Ekhterachian (UMD)

𝑆? ∼ 10
𝑁!

𝜖9:
p/;



Beyond the minimal model
• Goldberger-Wise field with self- interactions:

𝑉-y Φ =
1
2𝑚

!Φ! +
1
3! 𝜂Φ

p +
1
4! 𝜅Φ

;

• Effective mass: 𝑚z{{
! ∼ 𝑉-yvv (Φ)

59

sets 𝜖'(

sets 𝜖)*

𝑉 +
,

Agashe, Du, M.E., Kumar, Sundrum 2020

Majid Ekhterachian (UMD)

Φ



Beyond the minimal model
• Goldberger-Wise field with self- interactions:

𝑉-y Φ =
1
2𝑚

!Φ! +
1
3! 𝜂Φ

p +
1
4! 𝜅Φ

;

• Effective mass: 𝑚z{{
! ∼ 𝑉-yvv (Φ)

60

sets 𝜖'(

sets 𝜖)*

𝑉 +
,

Agashe, Du, M.E., Kumar, Sundrum 2020

Majid Ekhterachian (UMD)

UV brane IR brane

Φ

x'

∼IR scale invariance

∼ UV scale invariance

Φ



Two fixed points
• Goldberger-Wise field with self- interactions:

𝑉-y Φ =
1
2𝑚

!Φ! +
1
3! 𝜂Φ

p +
1
4! 𝜅Φ

;

• Effective mass: 𝑚z{{
! ∼ 𝑉-yvv (Φ)
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sets 𝜖'(

sets 𝜖)*

Φ

𝑉 +
,

Dual picture:
• RGE with UV and IR fixed points
• 𝜖jk and 𝜖9: are the anomalous 

dimensions corresponding to the 
UV and the IR fixed points.  

sets 𝜖)*
sets 𝜖'(

IR FPUV FP

Agashe, Du, M.E., Kumar, Sundrum 
2019, 2020

Majid Ekhterachian (UMD)

𝑔

𝛽-



𝑉345678(𝜑) ≈
𝜆HI 𝜑; 1 + 𝜔

𝜑
ΛHI

"J78
𝜑 > 𝜑68q

𝜆�� 𝜑; 1 − 𝜔��
𝜑
𝜑68q

J9:
𝜑 < 𝜑68q

𝑙𝑛 \;<=
\
∼ +

J9:
𝑙𝑛 �78

\>?@
∼ +
J78
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Beyond the minimal model Agashe, Du, M.E., Kumar, Sundrum 2020

• 𝜖jk controls the radion potential for large 𝜑 (in the UV, important for the hierarchies)
• 𝜖9: controls the radion potential for small 𝜑 (in the IR, important for the PT dynamics)



Beyond the minimal model
• Goldberger-Wise field with self- interactions:

𝑉-y Φ =
1
2𝑚

!Φ! +
1
3! 𝜂Φ

p +
1
4! 𝜅Φ

;

• Effective mass: 𝑚z{{
! ∼ 𝑉-yvv (Φ)
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sets 𝜖'(

sets 𝜖)*

Φ

𝑉 +
,

Agashe, Du, M.E., Kumar, Sundrum 2020

Majid Ekhterachian (UMD)

• Nucleation rate enhanced if 
𝜖9: not too small.

• PT can complete near 𝑇Z for 
parameters :

𝜖9: =
1
2
, 𝜆 = 0.5, 𝑁 ≈ 2

• Marginally in theoretical 
control. 



Supercooled Phase Transition

• How much supercooling?
• Supercooling and dilution

Majid Ekhterachian (UMD) 64



Supercooled transition

• For small 𝑇/𝑇W :

𝑆Xghijk ∼
𝑁A

𝜆
*
B

• A period of inflation: dilution of 
baryon and DM number densities
• Larger 𝜖lm → less supercooling.

65Majid Ekhterachian (UMD)

ln [A[ ≳
+
J9:

No enhancement by small 𝜖9:

Randall & Servant 2006
Konstandin & Servant 2011

𝑉BCDEFG(𝜙)

∼
𝑁
" 𝑇
0-

𝜙 ∼ 𝑇 𝜙
𝜙

∼ 𝑁"𝑇-

𝑇 ≲ 𝜙 < 𝜙)

𝜙)



Supercooled PT- dilution
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𝑇 ≈ 𝑇Z
• Before the phase transition

𝜂?N�73N ≡
𝑛��(𝑇Z)
𝑛�(𝑇Z)
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𝑇 ≪ 𝑇Z
• Before the phase transition

𝜂'()*+( ≡
𝑛,-(𝑇.)
𝑛/(𝑇.)

• As supercooling happens:
𝑛�� ∝ 𝑇p,     𝑛� ∝ 𝑇p

𝜂(𝑇G)= 𝜂?N�73N

Supercooled PT- dilution
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𝑇 ∼ 𝑇Z• Before the phase transition: 

𝜂'()*+( ≡
𝑛,-(𝑇.)
𝑛/(𝑇.)

• As supercooling happens:
𝑛,- ∝ 𝑇0,     𝑛/ ∝ 𝑇0

𝜂(𝑇1)= 𝜂'()*+(
• After the PT completes, universe is reheated 

to 𝑇 ∼ 𝑇Z
𝑛��,4�qN3 ≈ 𝑛��(𝑇G), 𝑛� ∼ 𝑇Zp

𝜂4�qN3 ∼ 𝜂?N�73N 𝑇G/𝑇Z p

Supercooled PT- dilution



Results
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Minimal model

Larger 𝜖lm:
ü Less supercooling

ü Less dilution of 
preexisting matter 

üLarger 𝑁 allowed to 
complete the PT 



Gravitational wave signal
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Phenomenology



Stochastic gravitational wave background
• Strength and the spectrum of gravitational waves from PT depend on  𝛽!":

𝑓#$%& ∼ 0.03 mHz '$
($)

*./
+

Ω!" ∼ 10,-
𝐻
𝛽!"

.

• 1/𝛽 is the duration of the PT:
𝛽!"
𝐻 = −

𝑇
Γ
𝑑Γ
𝑑𝑇 <'0

• For generic PTs (not the models considered here):

;./
<

≈ +31
+ =>?

|?0~𝑆@ 𝑇A ∼ 100

§ Even larger if PT completes close to 𝑇0:     ;'(
<
~𝑆@ 𝑇A / 1 − 𝑇A/𝑇0
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Turner, Weinberg & Widrow 1992
Kosowsky & Turner 1992
Kosowsky, Turner & Watkins 1992

Caprini et al, 2015

Γ ∼ 𝑇-𝑒#3)



For composite Higgs models: 
§ 𝑆? independent of 𝑇 in the supercooled limit (result of 4D scale invariance):

§
�
�
≈ −4 + 3 𝜖9:

[<
�*/+ o

JCD
ln L5

[)
§ Temperature dependence controlled by 𝜖9:
§ Small 𝛽<=,  for small 𝜖9:

Stochastic gravitational wave background
• Strength and the spectrum of gravitational waves from PT depend on  
𝛽!":

• 1/𝛽 is the duration of the PT: *./
+

= − '
/
0/
0'
|'0

• For generic PTs (not the models considered here):
𝛽BC
𝐻 ≈

𝑑𝑆@
𝑑 ln𝑇 .?0

~𝑆@ 𝑇A ~100
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Konstandin & Servant 2011

Agashe, Du, M.E., Kumar, 
Sundrum 2019

Turner, Weinberg & Widrow 1992
Kosowsky & Turner 1992
Kosowsky, Turner & Watkins 1992
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incompatible with pre-
PT baryogenesis 



Stochastic gravitational wave background
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Bubble collisions only



More phenomenology
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• Small 𝛽<= can result in stronger gravitational wave signal

• Strong gravitational waves in composite Higgs models can allow for 

observable gravitational wave anisotropies 

• Dilaton/radion mass ∝ 𝜖9:, correlated with the gravitational wave 

signal.

• Fast PT opens the possibility of baryogenesis in composite Higgs 

models at scales above the  PT temperature. Agashe, Du, M.E., Fong, Hong, 
Vecchi  2019 & ongoing work

Geller, Hook, Sundrum, Tsai 2019



Summary
• Confinement PT of composite Higgs models can be studied in the scenario of 

spontaneous confinement and using holography. 
• The holographic dual 5D formulation (RS) allows for a controlled description of the 

PT dynamics within 5D EFT. 
• Slow PT in the minimal model, leading to empty universe or large supercooling 

and dilution of (dark) matter.
• Beyond the minimal model: separate “critical exponents” controlling the 

hierarchies (𝜖jk) and  PT dynamics (𝜖9:)
• PT can complete without large supercooling, compatible with genesis of matter 

abundances before PT.
• Gravitational wave signal and radion mass sensitive to 𝜖9:. 
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Thank you!
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Extra Slides
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Spontaneous Confinement- Dilaton EFT

Dilaton Lagrangian:

ℒ=>r<s?@ =
𝑁A

16𝜋A
𝜕𝜙 A − 𝜆𝜙B

• Large 𝑁 and small 𝜆 ≲ 1

• Spontaneous confinement, 𝜙 ≠ 0, not stable 

ℒ = ℒ89:
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A large 𝑁 CFT:



Spontaneous Confinement- Dilaton EFT

Dilaton Lagrangian:

ℒ+.D*EFA =
𝑁"

16𝜋"
𝜕𝜙 " − 𝜆𝜙- 1 − 𝜔

𝜙
ΛGH

I

• 𝜖 parameterizes explicit breaking of scale invariance and sets the 
hierarchy

ln
𝑀12

TeV ∼ ln
Λ3)
⟨𝜙⟩ ∼

1
𝜖 ∼ 30

ℒ(Λz{) = ℒW|} +
1
Λz{E

𝒪
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Deform the CFT
𝑂 = 4 + 𝜖

𝑉(𝜙)

𝜙

𝜙

But with small explicit 
breaking of scale invariance:



The (de)confinement PT

• Critical Temperature:     [)\ ∼ 𝜖𝜆
*
+ ≪ 1

• Typical composites not excited

𝑚�7�� ∼ 𝜑 ≫ 𝑇

• PT is first order, for small 𝜖 or 𝜆.
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1st order ⟹ bubble nucleation

Justifies radion EFT

Creminelli, Nicolis & Rattazzi 2002

𝑉+.D(𝜙)

∼
𝑁
" 𝑇
0-

𝜙
𝜙

∼
𝑁
" 𝜆
𝜖
𝜙

#



Bubble Nucleation
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𝑇 ≲ 𝜙 < ⟨𝜙⟩

Deconfined

Confined
𝜙 ≈ ⟨𝜙⟩

𝑉(𝜙)

∼
𝑁
" 𝑇
0-

𝜙 ∼ 𝑇 𝜙

𝑇=
𝜙

∼ 𝜖𝜆
&
7 ≪ 1

𝜙

∼
𝑁
" 𝑇

-



Bubble Nucleation

• For 𝑇 close to 𝑇W (thin-wall):

𝑆Xghijk =
16𝜋
3

𝑆%*

Δ𝐹 A𝑇
• 𝑆%: tension of the wall
• Contribution of 𝜑 ≫ 𝑇 region enhanced by small 𝜖, 𝜆:

𝑆% ∼
𝑁A

𝜖𝜆 %/B 𝑇~
*

• Similar enhancement not expected for 𝜑 ∼ 𝑇 region
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Confined
𝜙 ≈ ⟨𝜙⟩



The 5D bounce
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The 5D bounce- smoothness
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ü IR-brane can be smoothly sealed at the horizon
üBounce is smooth and can be described in 5D EFT 

𝑟
𝑟∗

Agashe, Du, M.E., Kumar, Sundrum 2020



RS1 and Goldberger-Wise mechanism
• In RS1 model, hierarchies are is related to the position of 

the IR brane:
TeV
𝑀/0

∼ 𝑒"#1!

• IR-brane stabilized using a bulk scalar (Goldberger-Wise) 
field, minimally with the potential:

𝑉<= Φ =
1
2
𝑚!Φ!

• Generates a potential for the radion, 𝜑 = 𝑘𝑒"#1! , the 
field corresponding to the position of the IR brane. 

𝑉)*+.FA 𝜑 =
3𝑁"

4𝜋" 𝜆 𝜑
- 1 − 𝜔

𝜑
ΛGH

I

• Hierarchy is set mainly by 𝜖 ≈ K&

;#&: ln
L'(
MNI ∼

+
J

Randall & Sundrum 1999

Goldberger & Wise 1999

86

UV brane

(𝒙𝟓 = 𝟎) IR brane

(𝒙𝟓 = 𝑿𝟓)

Majid Ekhterachian (UMD)

𝑑𝑠" = 𝑒#"$%!𝜂&'𝑑𝑥&𝑑𝑥' + 𝑑𝑥("

0 < 𝑥( < 𝑋(



Separate fixed points- faster PT

87

• RGE with UV and IR fixed points
• 𝜖jk and 𝜖9: are the anomalous dimensions 

corresponding to the UV and the IR fixed points.

sets 𝜖)*
sets 𝜖'(

IR FP
UV FP

Agashe, Du, M.E., Kumar, Sundrum 2019

Majid Ekhterachian (UMD)

𝑔

𝛽-



Two fixed points
• Goldberger-Wise field with self- interactions:

𝑉-y Φ =
1
2𝑚

!Φ! +
1
3! 𝜂Φ

p +
1
4! 𝜅Φ

;

• Effective mass: 𝑚z{{
! ∼ 𝑉-yvv (Φ)
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sets 𝜖'(

sets 𝜖)*

Φ

𝑉 +
,

Dual picture:
• RGE with UV and IR fixed points
• 𝜖jk and 𝜖9: are the anomalous 

dimensions corresponding to the 
UV and the IR fixed points.  

sets 𝜖)*
sets 𝜖'(

IR FPUV FP

Agashe, Du, M.E., Kumar, Sundrum 
2019, 2020
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𝑔

𝛽-



Separate fixed points- faster PT

89

• RGE with UV and IR fixed points
• 𝜖jk and 𝜖9: are the anomalous dimensions 

corresponding to the UV and the IR fixed points. 

sets 𝜖)*
sets 𝜖'(

IR FP
UV FP

Agashe, Du, M.E., Kumar, Sundrum 2019
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𝑔

𝛽-

• Nucleation rate enhanced if 
𝜖9: not too small.

• PT can complete near 𝑇Z for 
parameters :

𝜖9: =
1
2
, 𝜆 = 0.5, 𝑁 ≈ 2

• Marginally in theoretical 
control. 



Separate fixed points- faster PT

90

• RGE with UV and IR fixed points
• 𝜖jk and 𝜖9: are the anomalous dimensions 

corresponding to the UV and the IR fixed points. 

sets 𝜖)*
sets 𝜖'(

IR FP
UV FP

Agashe, Du, M.E., Kumar, Sundrum 2019
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𝑔

𝛽-

Holographic dual: Self-interacting 
Goldberger-Wise  


